Affiliation:
1. Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Abstract
Ion–molecule reactions between the neutral ethyl- (EF), isopropyl- (IF), t-butyl- (TF) and phenyl formate (PF) and proton-bound water clusters W2H+ and W3H+ (W = H2O) showed that the major reaction product is water loss from the initial encounter complex, followed ultimately by the formation of the protonated formate. Collision-induced dissociation breakdown curves of the formate–water complexes were obtained as a function of collision energy and modeled to extract relative activation energies for the observed channels. Density functional theory calculations (B3LYP/6-311+G(d,p)) of the water loss reactions were consistent with reactions having no reverse energy barrier in each case. Overall, the results indicate that the interaction of formates with atmospheric water can form stable encounter complexes that will dissociate by sequential water loss to form protonated formates.
Funder
Natural Sciences and Engineering Research Council
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献