Metal Complexes Containing Homoleptic Diorganoselenium(II) Ligands: Synthesis, Characterization and Investigation of Optical Properties

Author:

Dumitraș Darius1ORCID,Gal Emese2ORCID,Silvestru Cristian1ORCID,Pop Alexandra1ORCID

Affiliation:

1. Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Str. Arany Janos 11, RO-400028 Cluj-Napoca, Romania

2. Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Str. Arany Janos 11, RO-400028 Cluj-Napoca, Romania

Abstract

[(Z)-2′-{2-C6H5-(4H)-oxazol-5-one}CHC6H4]2Se (5, L1) and [(Z)-4′-{2-C6H5-(4H)-oxazol-5-one}CHC6H4]2Se (6, L2) were prepared, structurally characterized and used as ligands to obtain new metal complexes of types [MX(Ln)] [L1: M = Ag, X = OTf (7); M = Au, X = Cl (13); L2: M = Ag, X = OTf (8); M = Au, X = Cl (14)], [(MX)2(Ln)] [M = Ag, X = OTf, L1 (9); L2 (10)], [ZnCl2(Ln)] [L1 (15); L2 (16)] and [Ag(Ln)][PF6] [L1 (11); L2 (12)]. The silver complexes 7 and 8 were ionic species (1:1 electrolytes) in a MeCN solution, while in the solid state, the triflate fragments were bonded to the silver cations. Similarly, the 2:1 complexes 9 and 10 were found to behave as 1:2 electrolytes in a MeCN solution, but single-crystal X-ray diffraction demonstrated that compound 9 showed the formation of a dimer in the solid state: a tetranuclear [Ag(OTf)]4 built through bridging triflate ligands was coordinated by two bridging organoselenium ligands through the nitrogen from the oxazolone ring and the selenium atoms in a 1κN:2κSe fashion. Supramolecular architectures supported by intermolecular C−H∙∙∙π, C−H∙∙∙O, Cl∙∙∙H and F∙∙∙H interactions were observed in compounds 4, 5 and 9. The compounds exhibited similar photophysical properties, with a bathochromic shift in the UV-Vis spectra caused by the position of the oxazolone ring on the phenyl ring attached to the selenium atoms.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3