UPLC-Q-TOF/MS Based Plasma Metabolomics for Identification of Paeonol’s Metabolic Target in Endometriosis

Author:

Liu Jing,Yang Dongxia,Piao Chengyu,Wang Xu,Sun Xiaolan,Li Yongyan,Zhang Shuxiang,Wu Xiuhong

Abstract

Endometriosis is a common gynecological illness in women of reproductive age that significantly decreases life quality and fertility. Paeonol has been shown to play an important part in endometriosis treatments. Understanding the mechanism is critical for treating endometriosis. In this study, autologous transplantation combined with a 28 day ice water bath was used to create a rat model of endometriosis with cold clotting and blood stagnation. The levels of estradiol and progesterone in plasma were detected by ELISA, and the pathological changes of ectopic endometrial tissue were examined by H&E staining, which proved the efficacy of paeonol. For metabolomic analysis of plasma samples, UPLC-Q/TOF-MS was combined with multivariate statistical analysis to identify the influence of paeonol on small molecule metabolites relevant to endometriosis. Finally, the key targets were screened using a combination of network pharmacology and molecular docking approaches. The results showed that the pathological indexes of rats were improved and returned to normal levels after treatment with paeonol, which was the basis for confirming the efficacy of paeonol. Metabolomics results identified 13 potential biomarkers, and paeonol callbacks 7 of them, involving six metabolic pathways. Finally, four key genes were found for paeonol therapy of endometriosis, and the results of molecular docking revealed a significant interaction between paeonol and the four key genes. This study was successful in establishing a rat model of endometriosis with cold coagulation and blood stagnation. GCH1, RPL8, PKLR, and MAOA were the key targets of paeonol in the treatment of endometriosis. It is also demonstrated that metabolomic techniques give the potential and environment for comprehensively understanding drug onset processes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3