Bimodal Fucoidan-Coated Zinc Oxide/Iron Oxide-Based Nanoparticles for the Imaging of Atherothrombosis

Author:

Nguyen Hoang,Tinet Eric,Chauveau Thierry,Geinguenaud Frédéric,Lalatonne Yoann,Michel Aude,Aid-Launais Rachida,Journé Clément,Lefèbvre Caroline,Simon-Yarza Teresa,Motte Laurence,Jouini Noureddine,Tualle Jean-Michel,Chaubet FrédéricORCID

Abstract

A polyol method was used to obtain ultrasmall ZnO nanoparticles (NPs) doped with iron ions and coated with a low molecular weight fucoidan in order to perform in vivo MR and ex vivo fluorescence imaging of athrothrombosis. During the synthesis, the early elimination of water by azeotropic distillation with toluene allowed us to produce NPs which size, determined by XRD and TEM, decreased from 7 nm to 4 nm with the increase of iron/zinc ratios from 0.05 to 0.50 respectively. For the highest iron content (NP-0.50) NPs were evidenced as a mixture of nanocrystals made of wurtzite and cubic phase with a molar ratio of 2.57:1, although it was not possible to distinguish one from the other by TEM. NP-0.50 were superparamagnetic and exhibited a large emission spectrum at 470 nm when excited at 370 nm. After surface functionalization of NP-0.50 with fucoidan (fuco-0.50), the hydrodynamic size in the physiological medium was 162.0 ± 0.4 nm, with a corresponding negative zeta potential of −48.7 ± 0.4 mV, respectively. The coating was evidenced by FT-IR spectra and thermogravimetric analysis. Aqueous suspensions of fuco-0.50 revealed high transverse proton relaxivities (T2) with an r2 value of 173.5 mM−1 s−1 (300 K, 7.0 T) and remained stable for more than 3 months in water or in phosphate buffer saline without evolution of the hydrodynamic size and size distribution. No cytotoxic effect was observed on human endothelial cells up to 48 h with these NPs at a dose of 0.1 mg/mL. After injection into a rat model of atherothrombosis, MR imaging allowed the localization of diseased areas and the subsequent fluorescence imaging of thrombus on tissue slices.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3