Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives

Author:

Sun Haiya1ORCID,Chen Shuixin1,Zhong Aiguo2,Sun Rong1,Jin Jiajie1,Yang Jiahao1,Liu Dongzhi3,Niu Junfeng1,Lu Shengli1

Affiliation:

1. Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China

3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Abstract

A series of aggregation-induced emission (AIE)-featured phenylmethylene pyridineacetonitrile derivatives named o-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-2-yl)acrylonitrile), m-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-3-yl)acrylonitrile), and p-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-4-yl)acrylonitrile) have been synthesized by tuning the substitution position of the pyridine ring. The linkage manner of the pyridine ring had influences on the molecular configuration and conjugation, thus leading to different photophysical properties. The absorption and fluorescence emission peak showed a bathochromic shift when the linking position of the pyridine ring changed from the meta to the ortho and para position. Meanwhile, o-DBCNPy exhibited the highest fluorescence quantum yield of 0.81 and the longest fluorescence lifetime of 7.96 ns as a neat film among all three isomers. Moreover, non-doped organic light-emitting diodes (OLEDs) were assembled in which the molecules acted as the light-emitting layer. Due to the relatively prominent emission properties, the electroluminescence (EL) performance of the o-DBCNPy-based OLED was superior to those of the devices based on the other two isomers with an external quantum efficiency (EQE) of 4.31%. The results indicate that delicate molecular modulation of AIE molecules could endow them with improved photophysical properties, making them potential candidates for organic photoelectronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Key R&D Project for Tackling Key Scientific and Technological Problems of Zhejiang Province, the “Leading Swan Goose Project”

Zhejiang Administration for Market Regulation Eyas Program Cultivation Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3