The Role of Structural Representation in the Performance of a Deep Neural Network for X-ray Spectroscopy

Author:

Madkhali Marwah M.M.,Rankine Conor D.ORCID,Penfold Thomas J.

Abstract

An important consideration when developing a deep neural network (DNN) for the prediction of molecular properties is the representation of the chemical space. Herein we explore the effect of the representation on the performance of our DNN engineered to predict Fe K-edge X-ray absorption near-edge structure (XANES) spectra, and address the question: How important is the choice of representation for the local environment around an arbitrary Fe absorption site? Using two popular representations of chemical space—the Coulomb matrix (CM) and pair-distribution/radial distribution curve (RDC)—we investigate the effect that the choice of representation has on the performance of our DNN. While CM and RDC featurisation are demonstrably robust descriptors, it is possible to obtain a smaller mean squared error (MSE) between the target and estimated XANES spectra when using RDC featurisation, and converge to this state a) faster and b) using fewer data samples. This is advantageous for future extension of our DNN to other X-ray absorption edges, and for reoptimisation of our DNN to reproduce results from higher levels of theory. In the latter case, dataset sizes will be limited more strongly by the resource-intensive nature of the underlying theoretical calculations.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference50 articles.

1. Dynamic Behavior of Rh Species in Rh/Al2O3 Model Catalyst during Three-Way Catalytic Reaction: An Operando X-ray Absorption Spectroscopy Study

2. Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development

3. Recent Advances in Ultrafast X-ray Absorption Spectroscopy of Solutions;Penfold;Adv. Chem. Phys.,2013

4. Recent experimental and theoretical developments in time-resolved X-ray spectroscopies

5. X-ray Absorption: Principles, Applications, and Techniques of EXAFS, SEXAFS, and XANES;Koningsberger,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3