Dimethylaminoethyl Methacrylate/Diethylene Glycol Dimethacrylate Grafted onto Folate-Esterified Bagasse Xylan/Andrographolide Composite Nanoderivative: Synthesis, Molecular Docking and Biological Activity

Author:

Su Yue,Zhang Shufen,Li Heping,Zhao Bin,Tian Kexin,Zou Zhiming

Abstract

As a biocompatible biomaterial, bagasse xylan (BX) has been widely used in the biomedical field. The low biological activity of andrographolide (AD) restricts its development, so AD with certain anticancer activity is introduced. We use chemical modification methods such as grafting and esterification to improve the biological activity and make a novel anticancer nanomaterial. On the basis of the esterification of a mixture of BX and AD with folic acid (FA), a novel anticancer nanoderivative of bagasse xylan/andrographolide folate-g-dimethylaminoethyl methacrylate (DMAEMA)/diethylene glycol dimethacrylate (DEGDMA) nanoparticles (FA-BX/AD-g-DMAEMA/DEGDMA NPs) was synthesized by introducing DMAEMA and DEGDMA monomers through a graft copolymerization and nanoprecipitation method. The effects of reaction temperature, reaction time, the initiator concentration and the mass ratio of FA-BX/AD to mixed monomers on the grafting rate (GR) were investigated. The structure of the obtained product was characterized by FTIR, SEM, XRD and DTG. Further, molecular docking and MTT assays were performed to understand the possible docking sites with the target proteins and the anticancer activity of the product. The results showed that the GR of the obtained product was 79% under the conditions of the initiator concentration 55 mmol/L, m (FA-BX/AD):m (mixed monomer) = 1:2, reaction temperature 50 °C and reaction time 5 h. The inhibition rate of FA-BX/AD-g-DMAEMA/DEGDMA NPs on human lung cancer cells (NCI-H460) can reach 39.77 ± 5.62%, which is about 7.6 times higher than that of BX. Therefore, this material may have potential applications in the development of anticancer drug or carriers and functional materials.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3