Ligand Screening of Membrane Proteins Embedded in Nanodiscs: How to Manage Non-Specific Interactions in Weak Affinity Chromatography?

Author:

Vidal François-Xavier1,Deloche Adrien1,Zeder-Lutz Gabrielle2ORCID,Hideux Maria3,Wagner Renaud2ORCID,Dugas Vincent1ORCID,Demesmay Claire1ORCID

Affiliation:

1. Universite Claude Bernard Lyon1, Institut des Sciences Analytiques, UMR5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France

2. Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France

3. Institut de Recherche et Développement SERVIER Paris-Saclay-22, Route 128, 91190 Gif sur Yvette, France

Abstract

Miniaturized weak affinity chromatography is emerging as an interesting alternative to conventional biophysical tools for performing fragment-screening studies in the context of fragment-based drug discovery. In order to push back the analytical limits, it is necessary not only to control non-specific interactions with chromatographic support, but also to adapt this methodology by comparing the results obtained on an affinity column to a control column. The work presented in this study focused on fragment screening that targets a model membrane protein, the adenosine A2A receptor, embedded in nanodiscs (NDs) as biomimetic membranes. By studying the retention behavior of test fragment mixtures on supports modified with different types of NDs, we were able to determine the contribution of ND-related non-specific interactions, in particular the electrostatic effect of anionic phospholipids and the hydrophobic effect of neutral phospholipids. Different strategies for the preparation of control columns (empty NDs, orthosteric site blocking) were investigated and are presented for the first time. With these two types of control columns, the screening enabled the identification of two new fragments of AA2AR, which were confirmed by competition experiments and whose Kd values, estimated directly during the screening or after the competition experiments in frontal mode, were in good agreement.

Funder

French Agence Nationale de la Recherche

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3