Affiliation:
1. College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
2. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an 710065, China
3. College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Abstract
Cancer is a serious threat to human life and social development and the use of scientific methods for cancer prevention and control is necessary. In this study, HQSAR, CoMFA, CoMSIA and TopomerCoMFA methods are used to establish models of 65 imidazo[4,5-b]pyridine derivatives to explore the quantitative structure-activity relationship between their anticancer activities and molecular conformations. The results show that the cross-validation coefficients q2 of HQSAR, CoMFA, CoMSIA and TopomerCoMFA are 0.892, 0.866, 0.877 and 0.905, respectively. The non-cross-validation coefficients r2 are 0.948, 0.983, 0.995 and 0.971, respectively. The externally validated complex correlation coefficients r2pred of external validation are 0.814, 0.829, 0.758 and 0.855, respectively. The PLS analysis verifies that the QSAR models have the highest prediction ability and stability. Based on these statistics, virtual screening based on R group is performed using the ZINC database by the Topomer search technology. Finally, 10 new compounds with higher activity are designed with the screened new fragments. In order to explore the binding modes and targets between ligands and protein receptors, these newly designed compounds are conjugated with macromolecular protein (PDB ID: 1MQ4) by molecular docking technology. Furthermore, to study the nature of the newly designed compound in dynamic states and the stability of the protein-ligand complex, molecular dynamics simulation is carried out for N3, N4, N5 and N7 docked with 1MQ4 protease structure for 50 ns. A free energy landscape is computed to search for the most stable conformation. These results prove the efficient and stability of the newly designed compounds. Finally, ADMET is used to predict the pharmacology and toxicity of the 10 designed drug molecules.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi
Scientific Research Program Funded by Shaanxi Provincial Education Department
Young Talent Fund of Association for Science and Technology in Shaanxi, China
Natural Science Foundation of Shaanxi Province
Graduate Innovation Fund of Shaanxi University of Science and Technology