Preparation and Anti-Lung Cancer Activity Analysis of Guaiacyl-Type Dehydrogenation Polymer

Author:

Zhou Junyi1,Yue Yuanyuan1,Wei Xin1ORCID,Xie Yimin12ORCID

Affiliation:

1. Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China

2. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China

Abstract

In this paper, guaiacyl dehydrogenated lignin polymer (G-DHP) was synthesized using coniferin as a substrate in the presence of β-glucosidase and laccase. Carbon-13 nuclear magnetic resonance (13C-NMR) determination revealed that the structure of G-DHP was relatively similar to that of ginkgo milled wood lignin (MWL), with both containing β-O-4, β-5, β-1, β-β, and 5-5 substructures. G-DHP fractions with different molecular weights were obtained by classification with different polar solvents. The bioactivity assay indicated that the ether-soluble fraction (DC2) showed the strongest inhibition of A549 lung cancer cells, with an IC50 of 181.46 ± 28.01 μg/mL. The DC2 fraction was further purified using medium-pressure liquid chromatography. Anti-cancer analysis revealed that the D4 and D5 compounds from DC2 had better anti-tumor activity, with IC50 values of 61.54 ± 17.10 μg/mL and 28.61 ± 8.52 μg/mL, respectively. Heating electrospray ionization tandem mass spectrometry (HESI-MS) results showed that both the D4 and D5 were β-5-linked dimers of coniferyl aldehyde, and the 13C-NMR and 1H-NMR analyses confirmed the structure of the D5. Together, these results indicate that the presence of an aldehyde group on the side chain of the phenylpropane unit of G-DHP enhances its anticancer activity.

Funder

National Natural Science Foundation of China

Outstanding Young and Middle-aged Technological Innovation Team Project of Hubei Provincial Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3