Interface Bonding Properties of CrAlSiN-Coated Cemented Carbides Doped with CeO2 and Y2O3 Rare Earth Oxides

Author:

Yang Junru1,Yue Yanping1,Wang Yan2,Zhang Yuekan1ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Sinopec Qilu Company Ltd., Zibo 255400, China

Abstract

This study performed first-principle-based calculations of the interface adhesion work in interface models of three terminal systems: CrAlSiNSi/WC-Co, CrAlSiNN/WC-Co, and CrAlSiNAl/WC-Co. The results proved that the CrAlSiNSi/WC-Co and CrAlSiNAl/WC-Co interface models had the highest and lowest interface adhesion work values (4.312 and 2.536 J·m−2), respectively. Thus, the latter model had the weakest interface bonding property. On this basis, rare earth oxides CeO2 and Y2O3 were doped into the Al terminal model (CrAlSiNAl/WC-Co). Then, doping models of CeO2 and Y2O3 doped on the WC/WC, WC/Co, and CrAlSiNAl/WC-Co interfaces were established. The adhesion work value was calculated for the interfaces in each doping model. When CeO2 and Y2O3 were doped in the WC/WC and CrAlSiNAl/WC-Co interfaces, four doping models were constructed, each model contains interfaces withreduced adhesion work values, indicating deteriorated interface bonding properties. When the WC/Co interface was doped with CeO2 and Y2O3, the interface adhesion work values of the two doping models are both increased, and Y2O3 doping improved the bonding properties of the Al terminal model (CrAlSiNAl/WC-Co) more significantly than CeO2 doping. Next, the charge density difference and the average Mulliken bond population were estimated. The WC/WC and CrAlSiNAl/WC-Co interfaces doped with CeO2 or Y2O3, with decreased adhesion work, exhibited low electron cloud superposition and reduced values of charge transfer, average bond population, and interatomic interaction. When the WC/Co interface was doped with CeO2 or Y2O3, superposition of the atomic charge densities of electron clouds was consistently observed at the CrAlSiNAl/WC-Co interface in the CrAlSiNAl/WC/CeO2/Co and CrAlSiNAl/WC/Y2O3/Co models; the atomic interactions were strong, and the interface bonding strength increased. When the WC/Co interface was doped with Y2O3, the superposition of atomic charge densities and the atomic interactions were stronger than for CeO2 doping. In addition, the average Mulliken bond population and the atomic stability were also higher, and the doping effect was better.

Funder

Natural Science Foundation of Shandong Province of China

Qingdao West Coast New Area of Shandong province of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference31 articles.

1. Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys;Chang;Surf. Coat. Technol.,2014

2. Study on failure mechanism of CrAlSiN-coated tool in cutting titanium alloy;Tang;J. Tianjin Univ. Technol. Educ.,2021

3. A superhard CrAlSiN superlattice coatingdeposited by multi-arc ion plating: I. Microstructure and mechanical properties;Zhang;Surf. Coat. Technol.,2013

4. Study on cutting performance of dry turning Ti-6Al-4V titanium alloy with AlCrSiN coated tool;Liu;J. Guangdong Univ. Technol.,2021

5. Effect of nitrogen atmosphere heat treatment on structure and wear behavior of CrAlSiN nanocomposite film;Hsu;Surf. Coat. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3