Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering

Author:

Cui Juan,Wang HuapingORCID,Shi Qing,Sun Tao,Huang Qiang,Fukuda Toshio

Abstract

Three-dimensional (3D) tissue models replicating liver architectures and functions are increasingly being needed for regenerative medicine. However, traditional studies are focused on establishing 2D environments for hepatocytes culture since it is challenging to recreate biodegradable 3D tissue-like architecture at a micro scale by using hydrogels. In this paper, we utilized a gelatin methacryloyl (GelMA) hydrogel as a matrix to construct 3D lobule-like microtissues for co-culture of hepatocytes and fibroblasts. GelMA hydrogel with high cytocompatibility and high structural fidelity was determined to fabricate hepatocytes encapsulated micromodules with central radial-type hole by photo-crosslinking through a digital micromirror device (DMD)-based microfluidic channel. The cellular micromodules were assembled through non-contact pick-up strategy relying on local fluid-based micromanipulation. Then the assembled micromodules were coated with fibroblast-laden GelMA, subsequently irradiated by ultraviolet for integration of the 3D lobule-like microtissues encapsulating multiple cell types. With long-term co-culture, the 3D lobule-like microtissues encapsulating hepatocytes and fibroblasts maintained over 90% cell viability. The liver function of albumin secretion was enhanced for the co-cultured 3D microtissues compared to the 3D microtissues encapsulating only hepatocytes. Experimental results demonstrated that 3D lobule-like microtissues fabricated by GelMA hydrogels capable of multicellular co-culture with high cell viability and liver function, which have huge potential for liver tissue engineering and regenerative medicine applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3