Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO2 and Heavy Metals: QSAR Model Apply Random Forest Algorithm after Clustering Analysis

Author:

Sang Leqi,Wang Yunlin,Zong Cheng,Wang Pengfei,Zhang Huazhong,Guo Dan,Yuan BeileiORCID,Pan YongORCID

Abstract

With the development and application of nanomaterials, their impact on the environment and organisms has attracted attention. As a common nanomaterial, nano-titanium dioxide (nano-TiO2) has adsorption properties to heavy metals in the environment. Quantitative structure-activity relationship (QSAR) is often used to predict the cytotoxicity of a single substance. However, there is little research on the toxicity of interaction between nanomaterials and other substances. In this study, we exposed human renal cortex proximal tubule epithelial (HK-2) cells to mixtures of eight heavy metals with nano-TiO2, measured absorbance values by CCK-8, and calculated cell viability. PLS and two ensemble learning algorithms are used to build multiple QSAR models for data sets, and the test set R2 is increased from 0.38 to 0.78 and 0.85, and RMSE is decreased from 0.18 to 0.12 and 0.10. After selecting the better random forest algorithm, the K-means clustering algorithm is used to continue to optimize the model, increasing the test set R2 to 0.95 and decreasing the RMSE to 0.08 and 0.06. As a reliable machine algorithm, random forest can be used to predict the toxicity of the mixture of nano-metal oxides and heavy metals. The cluster analysis can effectively improve the stability and predictability of the model, and provide a new idea for the prediction of cytotoxicity model in the future.

Funder

National Natural Science Foundation of China

Chinese Foundation for Hepatitis Prevention and Control

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3