Structure and Performance of Benzoxazine Composites for Space Radiation Shielding

Author:

Winroth Scott,Scott Chris,Ishida Hatsuo

Abstract

Innovative multifunctional materials that combine structural functionality with other spacecraft subsystem functions have been identified as a key enabling technology for future deep space missions. In this work, we report the structure and performance of multifunctional polymer matrix composites developed for aerospace applications that require both structural functionality and space radiation shielding. Composites comprised of ultra-high molecular weight polyethylene (UHMWPE) fiber reinforcement and a hydrogen-rich polybenzoxazine matrix are prepared using a low-pressure vacuum bagging process. The polybenzoxazine matrix is derived from a novel benzoxazine resin that possesses a unique combination of attributes: high hydrogen concentration for shielding against galactic cosmic rays (GCR), low polymerization temperature to prevent damage to UHMWPE fibers during composite fabrication, long shelf-life, and low viscosity to improve flow during molding. Dynamic mechanical analysis (DMA) is used to study rheological and thermomechanical properties. Composite mechanical properties, obtained using several standardized tests, are reported. Improvement in composite stiffness, through the addition of carbon fiber skin layers, is investigated. Radiation shielding performance is evaluated using computer-based simulations. The composites demonstrate clear advantages over benchmark materials in terms of combined structural and radiation shielding performance.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3