A Theoretical Kinetic Study on Concerted Elimination Reaction Class of Peroxyl-hydroperoxyl-alkyl Radicals (•OOQOOH) in Normal-alkyl Cyclohexanes

Author:

Yao Xiaoxia1ORCID,Zhang Jilong2ORCID,Zhu Yifei3ORCID

Affiliation:

1. National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, China

2. Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China

3. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The concerted elimination reaction class of peroxyl-hydroperoxyl alkyl radicals (•OOQOOH) plays a crucial role in the low-temperature combustion of normal-alkyl cyclohexanes. The generation of the relatively unreactive HO2 radicals in this reaction is one of the factors leading to the negative temperature coefficient (NTC) behavior, which hinders the low-temperature oxidation of normal-alkyl cyclohexanes. In this study, 44 reactions are selected and divided into 4 different subclasses according to the nature of the carbon atom where the H atom is eliminated and the reaction center position. Utilizing the CBS-QB3 method, we compute the energy barriers for the concerted elimination reactions of peroxyl-hydroperoxyl alkyl radicals. Following this, we assess both the high-pressure limit and pressure-dependent rate constants for all reactions by applying TST and RRKM/ME theory. These calculations allow for the development of rate rules, which come to fruition through an averaging process involving the rate constants of representative reactions within each subclass. Our work provides accurate rate constants and rate rules for this reaction class, which can aid in constructing more accurate combustion mechanisms for normal-alkyl cyclohexanes.

Funder

National Natural Science Foundation of China General Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference51 articles.

1. Experimental formulation and kinetic model for JP-8 surrogate mixtures;Violi;Combust. Sci. Technol.,2002

2. Multi-structural variational kinetics study on hydrogen abstraction reactions of cyclopentanol and cyclopentane by hydroperoxyl radical with anharmonicity, recrossing and tunneling effects;Yang;Phys. Chem. Chem. Phys.,2023

3. Law, C.K. (2006). Combustion Physics, Cambridge University Press.

4. Stephen, R.T. (2000). An Introduction to Combustion: Concepts and Applications, McGraw-Hill. [2nd ed.].

5. Experimental and numerical study of premixed, lean ethylene flames;Delfau;Proc. Combust. Inst.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3