Efficient Adsorption of Chromium Ions from Aqueous Solutions by Plant-Derived Silica

Author:

Guevara-Lora IbethORCID,Wronski Norbert,Bialas AnnaORCID,Osip Honorata,Czosnek CezaryORCID

Abstract

Nowadays, there is great interest in the use of plant waste to obtain materials for environmental protection. In this study, silica powders were prepared with a simple and low-cost procedure from biomass materials such as horsetail and common reed, as well as wheat and rye straws. The starting biomass materials were leached in a boiling HCl solution. After washing and drying, the samples were incinerated at 700 °C for 1 h in air. The organic components of the samples were burned leaving final white powders. These powders were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and low-temperature nitrogen sorption. The amorphous powders (biosilica) contained mainly SiO2, as indicated by FTIR analysis. Horsetail-derived silica was chosen for testing the removal of dichromate ions from water solutions. This biosilica had a good ability to adsorb Cr(VI) ions, which increased after modification of the powder with the dodecylamine surfactant. It can be concluded that the applied procedure allowed obtaining high purity biosilica from plant waste with good efficiency. The produced biosilica was helpful in removing chromium ions and showed low cytotoxicity to human endothelial cells, suggesting that it can be safely used in environmental remediation.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3