Research on Hazardous Waste Removal Management: Identification of the Hazardous Characteristics of Fluid Catalytic Cracking Spent Catalysts

Author:

Fu Haihui,Chen Yan,Liu Tingting,Zhu Xuemei,Yang Yufei,Song Haitao

Abstract

Fluid catalytic cracking (FCC) spent catalysts are the most common catalysts produced by the petroleum refining industry in China. The National Hazardous Waste List (2016 edition) lists FCC spent catalysts as hazardous waste, but this listing is very controversial in the petroleum refining industry. This study collects samples of waste catalysts from seven domestic catalytic cracking units without antimony-based passivation agents and identifies their hazardous characteristics. FCC spent catalysts do not have the characteristics of flammability, corrosiveness, reactivity, or infectivity. Based on our analysis of the components and production process of the FCC spent catalysts, we focused on the hazardous characteristic of toxicity. Our results show that the leaching toxicity of the heavy metal pollutants nickel, copper, lead, and zinc in the FCC spent catalyst samples did not exceed the hazardous waste identification standards. Assuming that the standards for antimony and vanadium leachate are 100 times higher than that of the surface water and groundwater environmental quality standards, the leaching concentration of antimony and vanadium in the FCC spent catalyst of the G set of installations exceeds the standard, which may affect the environmental quality of surface water or groundwater. The quantities of toxic substances in all spent FCC catalysts, except those from G2, does not exceed the standard. The acute toxicity of FCC spent catalysts in all installations does not exceed the standard. Therefore, we exclude “waste catalysts from catalytic cracking units without antimony-based passivating agent passivation nickel agent” from the “National Hazardous Waste List.”

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3