Synthesis of AZO-Coated ZnO Core–Shell Nanorods by Mist Chemical Vapor Deposition for Wastewater Treatment Applications

Author:

Wai Htet Su1,Ikuta Tomoya1,Li Chaoyang12

Affiliation:

1. School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Cho, Kami City 782-8502, Kochi, Japan

2. Center of Nanotechnology, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Cho, Kami City 782-8502, Kochi, Japan

Abstract

AZO-coated ZnO core–shell nanorods were successfully fabricated using the mist chemical vapor deposition method. The influence of coating time on the structural, optical, and photocatalytic properties of zinc oxide nanorods was investigated. It was observed that the surface area of AZO-coated ZnO core–shell nanorods increased with an increase in coating time. The growth orientation along the (0001) crystal plane of the AZO thin film coating was the same as that of zinc oxide nanorods. The crystallinity of AZO-coated ZnO core–shell nanorods was significantly improved as well. The optical transmittance of AZO-coated ZnO core–shell nanorods was greater than 55% in the visible region. The degradation efficiency for methyl red dye solution increased with an increase in coating time. The highest degradation efficiency was achieved by AZO-coated ZnO core–shell nanorods with a coating duration of 20 min, exhibiting a degradation rate of 0.0053 min−1. The photodegradation mechanism of AZO-coated ZnO core–shell nanorods under ultraviolet irradiation was revealed.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3