Development of Fluorescent Chemosensors for Calcium and Lead Detection

Author:

Gomes Liliana J.1ORCID,Outis Mani1ORCID,Gomes Clara S. B.1ORCID,Tomé Augusto C.2ORCID,Moro Artur J.1ORCID

Affiliation:

1. LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

2. LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and Pb2+, exhibiting an eight- and nine-fold emission increase, respectively, while other cations induced no changes in the optical properties of the chemosensor molecule. Job’s plots revealed a 1:1 binding stoichiometry, with association constants of 4.8 × 104 and 8.7 × 104 M–1, and limits of detection of 1.21 and 8.04 µM, for Ca2+ and Pb2+, respectively. Computational studies suggest the existence of a PET quenching mechanism, which is inhibited after complexation with each of these two metals. Proton NMR experiments and X-ray crystallography suggest a contribution from the carbonyl groups in the coumarin-3-carboxamide fluorophore in the coordination sphere of the metal ion.

Funder

Associate Laboratory for Green Chemistry—LAQV which is financed by national funds from FCT-MCTES

FCT-MCTES

The NMR spectrometers are part of Rede Nacional de RMN (PTNMR), supported by FCT-MCTES

FEDER through COMPETE 2020, POCI, and PORL and FCT through PIDDAC

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3