Density Functional Calculation and Evaluation of the Spectroscopic Properties and Luminescent Material Application Potential of the N-Heterocyclic Platinum(II) Tetracarbene Complexes

Author:

Xia Bao-Hui1,Ma Yin-Si1,Bai Fu-Quan12ORCID

Affiliation:

1. International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, China

2. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

Abstract

A series of reported Pt(II) carbene complexes possibly have the ability to serve as the new generation of blue emitters in luminescent devices because of their narrow emission spectra, high photoluminescence quantum yields (PLQYs), and rigid molecular skeleton. However, the combination of all carbene ligands with different multidentate structures will affect the overall planarity and horizontal dipole ratio to varying degrees, but the specific extent of this effect has not previously been analyzed in detail. In this work, density functional computation is used to study a class of platinum tetracarbene bidentate complexes with similar absorption and emission band characteristics, which is the main reason for the remarkable difference in quantum efficiency due to subtle differences in electronic states caused by different ligands. From the calculation results, the major reason, which results in significantly decrease in quantum efficiency for [Pt(cyim)2]2+, is that [Pt(cyim)2]2+ can reach the non-radiative deactivation metal-centered d-d excited state through an easier pathway compared with [Pt(meim)2]2+. The result, based on changes in the dihedral angle between ligands, can achieve the goal of improving and designing materials by adjusting the degree of the dihedral angle. (meim: bis(1,1′-dimethyl-3,3′-methylene-diimidazoline-2,2′-diylidene); cyim: bis(1,1′-dicyclohexyl-3,3′-methylene-diimidazoline-2,2′-diylidene).

Funder

‘14th Five-Year’ science and technology project of the education department of Jilin province

open fund of the state key laboratory of luminescent materials and devices of South China University of Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3