Affiliation:
1. Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Abstract
The renewable-energy-driven integration of hydrogen production and biomass conversion into value-added products is desirable for the current global energy transition, but still a challenge. Herein, carbon-coated CoO–Co heterojunction arrays were built on copper foam (CoO–Co@C/CF) by the carbothermal reduction to catalyze the hydrogen evolution reaction (HER) coupled with a 5-hydroxymethylfurfural electrooxidation reaction (HMFEOR). The electronic modulation induced by the CoO–Co heterojunction endows CoO–Co@C/CF with a powerful catalytic ability. CoO–Co@C/CF is energetic for HER, yielding an overpotential of 69 mV at 10 mA·cm−1 and Tafel slope of 58 mV·dec−1. Meanwhile, CoO–Co@C/CF delivers an excellent electrochemical activity for the selective conversion from HMF into 2,5-furandicarboxylic acid (FDCA), achieving a conversion of 100%, FDCA yield of 99.4% and faradaic efficiency of 99.4% at the lower oxidation potential, along with an excellent cycling stability. The integrated CoO–Co@C/CF||CoO–Co@C/CF configuration actualizes the H2O–HMF-coupled electrolysis at a satisfactory cell voltage of 1.448 V at 10 mA·cm−2. This work highlights the feasibility of engineering double active sites for the coupled electrolytic system.
Funder
National Natural Science Foundation of China
Science Fund for Distinguished Young Scholars of Heilongjiang Province
Natural Science Foundation of Heilongjiang Province
Fundamental Research Funds for Youth Science and Technology Innovation Team Project of Heilongjiang Province
Postdoctoral Science Foundation of Heilongjiang Province
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献