Author:
Zhang Wugang,Du Wendi,Li Guofeng,Zhang Chen,Yang Wuliang,Yang Shilin,Feng Yulin,Chen Haifang
Abstract
Erding granule (EDG) is a traditional Chinese medicine that has recently been identified as having anti-hypouricemic effects. However, the active components and underlying mechanism for this new indication have not been elucidated. Therefore, we compared the effects of different EDG extracts (water, 50% ethanol and 95% ethanol) on serum uric acid concentrations in the hyperuricemia model mouse. We also analyzed the constituents of different extracts by ultra-high performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) to observe the variation between the active and inactive products. Extract activity and target site were evaluated by assessing uric acid- and inflammation-suppressing effects along with evaluating ability to regulate the uric acid transporter. The results showed that the 50% ethanol extract (EDG-50) had an obvious serum uric acid concentration lowering effect compared with water (EDG-S) and the 95% ethanol extract (EDG-95). UHPLC-Q-TOF-MS/MS analysis showed that EDG-50 was compositionally different to EDG-S and EDG-95. EDG-50 showed dose-dependent effects on reducing uric acid, suppressing inflammation and regulating uric acid transporters. Moreover, western blot analysis showed that EDG-50 down-regulated GLUT9 and URAT1 expression, and up-regulated OAT1 expression. Therefore, our findings enable the preliminarily conclusion that EDG-50 lowers serum uric acid concentrations, mainly by down-regulating the expression of GLUT9 and URAT1 proteins and up-regulating the expression of OAT1 proteins. This provides a research basis for clinical use of EDG as an anti-hyperuricemic agent.
Funder
National Natural Science Foundation of China
Science and technology research project of Jiangxi Provincial Education Department
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献