Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population

Author:

Lee Hyun-Seung12ORCID,Chun Mi-Ryung2ORCID,Lee Soo-Youn23ORCID

Affiliation:

1. Department of Laboratory Medicine, School of Medicine, Wonkwang University, 895 Muwang-ro, Iksan-si 54538, Jeollabuk-do, Republic of Korea

2. Department of Laboratory Medicine and Genetics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

3. Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

Abstract

Measurement of multiple nicotine metabolites and total nicotine equivalents (TNE) might be a more reliable strategy for tobacco exposure verification than measuring single urinary cotinine alone. We simultaneously measured nicotine, cotinine, 3-OH cotinine, nornicotine, and anabasine using 19,874 urine samples collected from the Korean National Health and Nutrition Examination Survey. Of all samples, 18.6% were positive for cotinine, 17.4% for nicotine, 17.3% for nornicotine, 17.6% for 3-OH cotinine, and 13.2% for anabasine. Of the cotinine negative samples, less than 0.3% were positive for all nicotine metabolites, but not for anabasine (5.7%). The agreement of the classification of smoking status by cotinine combined with nicotine metabolites was 0.982–0.994 (Cohen’s kappa). TNE3 (the molar sum of urinary nicotine, cotinine, and 3-OH cotinine) was most strongly correlated with cotinine compared to the other nicotine metabolites; however, anabasine was less strongly correlated with other biomarkers. Among anabasine-positive samples, 30% were negative for nicotine or its metabolites, and 25% were undetectable. Our study shows that the single measurement of urinary cotinine is simple and has a comparable classification of smoking status to differentiate between current smokers and non-smokers relative to the measurement of multiple nicotine metabolites. However, measurement of multiple nicotine metabolites and TNE3 could be useful for monitoring exposure to low-level or secondhand smoke exposure and for determining individual differences in nicotine metabolism. Geometric or cultural factors should be considered for the differentiation of tobacco use from patients with nicotine replacement therapy by anabasine.

Funder

Korea Centers for Disease Control and Prevention

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3