A Planar Disk Electrode Chip Based on MWCNT/CS/Pb2+ Ionophore IV Nanomaterial Membrane for Trace Level Pb2+ Detection

Author:

Zhuang Yuan1,Wang Cong1,Qu Wei23,Yan Yirou1,Wang Ping1,Qiu Chengjun13

Affiliation:

1. College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China

2. College of Electronics and Information Engineering, Beibu Gulf University, Qinzhou 535011, China

3. Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, China

Abstract

Unlike conventional lead ion (Pb2+) detecting methods, electrochemical methods have the attractive advantages of rapid response, good portability and high sensitivity. In this paper, a planar disk electrode modified by multiwalled carbon nanotube (MWCNTs)/chitosan (CS)/lead (Pb2+) ionophore IV nanomaterial and its matched system are proposed. This system presented a good linear relationship between the concentration of Pb2+ ions and the peak current in differential pulse stripping voltammetry (DPSV), under optimized conditions of −0.8 V deposition potential, 5.5 pH value, 240 s deposition time, performed sensitive detection of Pb2+ within sensitivity of 1.811 μA · μg−1 and detection limit of 0.08 μg · L−1. Meanwhile, the results of the system in detecting lead ions in real seawater samples are highly similar to that of inductively coupled plasma emission spectrometer (ICP-MS), which proved a practicability for the system in detection of trace-level Pb2+.

Funder

National Natural Science Foundation of China

Scientific Research Foundation for Advanced Talents of Beibu Gulf University

Project of Qinzhou Science and Technology Source

Guangxi Young and middle-aged Teachers Basic Ability Improvement Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3