Effects of TiO2 Nanoparticles Synthesized via Microwave Assistance on Adsorption and Photocatalytic Degradation of Ciprofloxacin

Author:

Briševac Debora1ORCID,Gabelica Ivana1,Ljubas Davor1,Bafti Arijeta2,Matijašić Gordana2ORCID,Ćurković Lidija1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia

2. Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia

Abstract

In this study, the optimal microwave-assisted sol-gel synthesis parameters for achieving TiO2 nanoparticles with the highest specific surface area and photocatalytic activity were determined. Titanium isopropoxide was used as a precursor to prepare the sol (colloidal solution) of TiO2. Isopropanol was used as a solvent; acetylacetone was used as a complexation moderator; and nitric acid was used as a catalyst. Four samples of titanium dioxide were synthesized from the prepared colloidal solution in a microwave reactor at a temperature of 150 °C for 30 min and at a temperature of 200 °C for 10, 20, and 30 min. The phase composition of the TiO2 samples was determined by X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). Nitrogen adsorption/desorption isotherms were used to determine the specific surface area and pore size distributions using the Brunauer–Emmett–Teller (BET) method. The band-gap energy values of the TiO2 samples were determined by diffuse reflectance spectroscopy (DRS). The distribution of Ti and O in the TiO2 samples was determined by SEM-EDS analysis. The effects of adsorption and photocatalytic activity of the prepared TiO2 samples were evaluated by the degradation of ciprofloxacin (CIP) as an emerging organic pollutant (EOP) under UV-A light (365 nm). The results of the photocatalytic activity of the synthesized TiO2 nanoparticles were compared to the benchmark Degussa P25 TiO2. Kinetic parameters of adsorption and photocatalysis were determined and analyzed. It was found that crystalline TiO2 nanoparticles with the highest specific surface area, the lowest energy band gap, and the highest photocatalytic degradation were the samples synthesized at 200 °C for 10 min. The results indicate that CIP degradation by all TiO2 samples prepared at 200 °C show a synergistic effect of adsorption and photocatalytic degradation in the removal process.

Funder

Croatian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3