Effect of Adding Intermediate Layers on the Interface Bonding Performance of WC-Co Diamond-Coated Cemented Carbide Tool Materials

Author:

Yang Junru1,Yue Yanping1,Lv Hao1,Ren Baofei1,Zhang Yuekan1ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The interface models of diamond-coated WC-Co cemented carbide (DCCC) were constructed without intermediate layers and with different interface terminals, such as intermediate layers of TiC, TiN, CrN, and SiC. The adhesion work of the interface model was calculated based on the first principle. The results show that the adhesion work of the interface was increased after adding four intermediate layers. Their effect on improving the interface adhesion performance of cemented carbide coated with diamond was ranked in descending order as follows: SiC > CrN > TiC > TiN. The charge density difference and the density of states were further analyzed. After adding the intermediate layer, the charge distribution at the interface junction was changed, and the electron cloud at the interface junction overlapped to form a more stable chemical bond. Additionally, after adding the intermediate layer, the density of states of the atoms at the interface increased in the energy overlapping area. The formant formed between the electronic orbitals enhances the bond strength. Thus, the interface bonding performance of DCCC was enhanced. Among them, the most obvious was the interatomic electron cloud overlapping at the diamond/SiCC-Si/WC-Co interface, its bond length was the shortest (1.62 Å), the energy region forming the resonance peak was the largest (−5–20 eV), and the bonding was the strongest. The interatomic bond length at the diamond/TiNTi/WC-Co interface was the longest (4.11 Å), the energy region forming the resonance peak was the smallest (−5–16 eV), and the bonding was the weakest. Comprehensively considering four kinds of intermediate layers, the best intermediate layer for improving the interface bonding performance of DCCC was SiC, and the worst was TiN.

Funder

Natural Science Foundation of Shandong Province of China

Science and Technology Research-Revealing-List System special project of the Qingdao West Coast New Area of Shandong province of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3