Abstract
Diabetic nephropathy is characterized by the chronic loss of kidney function due to high glucose renal levels. HK-2 proximal tubular cells are good candidates to study this disease. The aim of this work was to study an in vitro model of high glucose-induced metabolic alterations in HK-2 cells to contribute to the pathogenesis of this diabetic complication. An untargeted metabolomics strategy based on CE-MS was developed to find metabolites affected under high glucose conditions. Intracellular and extracellular fluids from HK-2 cells treated with 25 mM glucose (high glucose group), with 5.5 mM glucose (normal glucose group), and with 5.5 mM glucose and 19.5 mM mannitol (osmotic control group) were analyzed. The main changes induced by high glucose were found in the extracellular medium where increased levels of four amino acids were detected. Three of them (alanine, proline, and glutamic acid) were exported from HK-2 cells to the extracellular medium. Other affected metabolites include Amadori products and cysteine, which are more likely cause and consequence, respectively, of the oxidative stress induced by high glucose in HK-2 cells. The developed CE-MS platform provides valuable insight into high glucose-induced metabolic alterations in proximal tubular cells and allows identifying discriminative molecules of diabetic nephropathy.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献