Abstract
Prussian blue (PB) is known for its multiple applications ranging from fine arts to therapeutics. More recently, PB nanoparticles have been pointed to as appealing photothermal agents (PA) when irradiated with wavelengths corresponding to the biological windows, namely regions located in the near infrared (NIR) zone. In addition, the combination of PB with other components such as phospholipids boosts their therapeutical potential by facilitating, for instance, the incorporation of drugs becoming suitable drug delivery systems. The novelty of the research relies on the synthesis procedure and characterization of hybrid lipid–PB nanoparticles with a high yield in a friendly environment suitable for photothermal therapy. This goal was achieved by first obtaining insoluble PB coated with oleylamine (OA) to facilitate its combination with lipids. The resulting lipid–PB complex showed a monomodal distribution of sizes with an overall size of around 100 nm and a polydispersity index of about 0.200. It highlights one critical step in the synthesis procedure that is the shaking time of the mixture of PB–OA nanoparticles with the lipid, which was found to be 48 h. This time assured homogeneous preparation without the need of further separation stages. Samples were stable for more than three months under several storage conditions.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献