Chiral Recognition of Amino Acid Esters in Organic Solvents Using a Glucose-Based Receptor

Author:

Mönkemöller Leah SusanneORCID,Schnurr Martin,Lewandowski Bartosz

Abstract

Due to the chemical and biological relevance of amino acids, efficient methods for the recognition and separation of their enantiomers are highly sought after. Chiral receptors based on extended molecular scaffolds are typically employed for this purpose. These receptors are often effective only in specific environments and towards a narrow scope of amino acid guests. Recently we reported a simple, glucose-based macrocycle capable of enantioselective binding of a broad range of amino acid methyl esters in water. Herein we demonstrate that the same receptor can be used for chiral recognition of amino acid esters in organic solvents. We show that the binding affinity and selectivity of the receptor are highly dependent on the coordinating strength of the solvent. An in-depth analysis of the receptor’s conformation and its interactions with amino acid methyl esters allowed us to propose a binding mode of amino acids to the receptor in CDCl3. The binding modes in CDCl3 and D2O were then compared, highlighting the main interactions responsible for binding affinity and selectivity in each solvent. We envision that the insight provided by this study will facilitate the development of further amino acid receptors based on monosaccharides with improved binding affinities and both enantio- as well as chemoselectivities.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3