Computational Methods for Understanding the Selectivity and Signal Transduction Mechanism of Aminomethyl Tetrahydronaphthalene to Opioid Receptors

Author:

Xie Peng,Zhang Junjie,Chen Baiyu,Li Xinwei,Zhang Wenbo,Zhu Mengdan,Li Wei,Li Jianqi,Fu Wei

Abstract

Opioid receptors are members of the group of G protein-couple receptors, which have been proven to be effective targets for treating severe pain. The interactions between the opioid receptors and corresponding ligands and the receptor’s activation by different agonists have been among the most important fields in opioid research. In this study, with compound M1, an active metabolite of tramadol, as the clue compound, several aminomethyl tetrahydronaphthalenes were designed, synthesized and assayed upon opioid receptors. With the resultant compounds FW-AII-OH-1 (Ki = 141.2 nM for the κ opioid receptor), FW-AII-OH-2 (Ki = 4.64 nM for the δ opioid receptor), FW-DI-OH-2 (Ki = 8.65 nM for the δ opioid receptor) and FW-DIII-OH-2 (Ki = 228.45 nM for the δ opioid receptor) as probe molecules, the structural determinants responsible for the subtype selectivity and activation mechanisms were further investigated by molecular modeling and molecular dynamics simulations. It was shown that Y7.43 was a key residue in determining the selectivity of the three opioid receptors, and W6.58 was essential for the selectivity of the δ opioid receptor. A detailed stepwise discovered agonist-induced signal transduction mechanism of three opioid receptors by aminomethyl tetrahydronaphthalene compounds was proposed: the 3–7 lock between TM3 and TM7, the DRG lock between TM3 and TM6 and rearrangement of I3.40, P5.50 and F6.44, which resulted in the cooperative movement in 7 TMs. Then, the structural relaxation left room for the binding of the G protein at the intracellular site, and finally the opioid receptors were activated.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Development Funds

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3