Non-Isocyanate Urethane Acrylate Derived from Isophorone Diamine: Synthesis, Characterization and Its Application in 3D Printing

Author:

Zhang Xinqi1,Zan Xinxin1,Yin Jiangdi1,Wang Jiaxi12

Affiliation:

1. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

2. Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, China

Abstract

In this paper, urethane-based acrylates (UA) were prepared via an environmentally friendly non-isocyanate route. Isophorone diamine (IPDA) reacted with ethylene carbonate (EC), producing carbamate containing amine and hydroxyl groups, which further reacted with neopentyl glycol diacrylate (NPGDA) by aza Michael addition, forming UA. The structures of the obtained intermediates and UA were characterized by 1H NMR and electrospray ionization high-resolution mass spectrometry (ESI-HRMS). The photopolymerization kinetics of UA were investigated by infrared spectroscopy. The composite with obtained UA can be UV cured quickly to form a transparent film with a tensile strength of 21 MPa and elongation at break of 16%. After UV curing, the mono-functional urethane acrylate was copolymerized into the cross-linked network in the form of side chains. The hydroxyl and carbamate bonds on the side chains have high mobility, which make them easy to form stronger dynamic hydrogen bonds during the tensile process, giving the material a higher tensile strength and elongation at break. Therefore, the hydrogen bonding model of a cross-linked network is proposed. The composite with UA can be 3D printed into models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3