Comparative Interaction Studies of Quercetin with 2-Hydroxyl-propyl-β-cyclodextrin and 2,6-Methylated-β-cyclodextrin

Author:

Vakali VasilikiORCID,Papadourakis MichailORCID,Georgiou Nikitas,Zoupanou Nikoletta,Diamantis Dimitrios A.,Javornik Uroš,Papakyriakopoulou Paraskevi,Plavec JanezORCID,Valsami GeorgiaORCID,Tzakos Andreas G.ORCID,Tzeli DemeterORCID,Cournia ZoeORCID,Mauromoustakos ThomasORCID

Abstract

Quercetin (QUE) is a well-known natural product that can exert beneficial properties on human health. However, due to its low solubility its bioavailability is limited. In the present study, we examine whether its formulation with two cyclodextrins (CDs) may enhance its pharmacological profile. Comparative interaction studies of quercetin with 2-hydroxyl-propyl-β-cyclodextrin (2HP-β-CD) and 2,6-methylated cyclodextrin (2,6Me-β-CD) were performed using NMR spectroscopy, DFT calculations, and in silico molecular dynamics (MD) simulations. Using T1 relaxation experiments and 2D DOSY it was illustrated that both cyclodextrin vehicles can host quercetin. Quantum mechanical calculations showed the formation of hydrogen bonds between QUE with 2HP-β-CD and 2,6Μe-β-CD. Six hydrogen bonds are formed ranging between 2 to 2.8 Å with 2HP-β-CD and four hydrogen bonds within 2.8 Å with 2,6Μe-β-CD. Calculations of absolute binding free energies show that quercetin binds favorably to both 2,6Me-β-CD and 2HP-β-CD. MM/GBSA results show equally favorable binding of quercetin in the two CDs. Fluorescence spectroscopy shows moderate binding of quercetin in 2HP-β-CD (520 M−1) and 2,6Me-β-CD (770 M−1). Thus, we propose that both formulations (2HP-β-CD:quercetin, 2,6Me-β-CD:quercetin) could be further explored and exploited as small molecule carriers in biological studies.

Funder

Slovenian Research Agency

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3