An Accurate Approach for Computational pKa Determination of Phenolic Compounds

Author:

Pezzola Silvia,Tarallo Samuele,Iannini Alessandro,Venanzi MarianoORCID,Galloni PierlucaORCID,Conte ValeriaORCID,Sabuzi FedericaORCID

Abstract

Computational chemistry is a valuable tool, as it allows for in silico prediction of key parameters of novel compounds, such as pKa. In the framework of computational pKa determination, the literature offers several approaches based on different level of theories, functionals and continuum solvation models. However, correction factors are often used to provide reliable models that adequately predict pKa. In this work, an accurate protocol based on a direct approach is proposed for computing phenols pKa. Importantly, this methodology does not require the use of correction factors or mathematical fitting, making it highly practical, easy to use and fast. Above all, DFT calculations performed in the presence two explicit water molecules using CAM-B3LYP functional with 6-311G+dp basis set and a solvation model based on density (SMD) led to accurate pKa values. In particular, calculations performed on a series of 13 differently substituted phenols provided reliable results, with a mean absolute error of 0.3. Furthermore, the model achieves accurate results with -CN and -NO2 substituents, which are usually excluded from computational pKa studies, enabling easy and reliable pKa determination in a wide range of phenols.

Funder

Lazio Innova—Regione Lazio Progetti Gruppi di Ricerca

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3