Abstract
Development of nanotechnology has become prominent in many fields, such as medicine, electronics, production of materials, and modern drugs. Nanomaterials and nanoparticles have gained recognition owing to the unique biochemical and physical properties. Considering cellular application, it is speculated that nanoparticles can transfer through cell membranes following different routes exclusively owing to their size (up to 100 nm) and surface functionalities. Nanoparticles have capacity to enter cells by themselves but also to carry other molecules through the lipid bilayer. This quality has been utilized in cellular delivery of substances like small chemical drugs or nucleic acids. Different nanoparticles including lipids, silica, and metal nanoparticles have been exploited in conjugation with nucleic acids. However, the noble metal nanoparticles create an alternative, out of which gold nanoparticles (AuNP) are the most common. The hybrids of DNA or RNA and metal nanoparticles can be employed for functional assemblies for variety of applications in medicine, diagnostics or nano-electronics by means of biomarkers, specific imaging probes, or gene expression regulatory function. In this review, we focus on the conjugates of gold nanoparticles and nucleic acids in the view of their potential application for cellular delivery and biomedicine. This review covers the current advances in the nanotechnology of DNA and RNA-AuNP conjugates and their potential applications. We emphasize the crucial role of metal nanoparticles in the nanotechnology of nucleic acids and explore the role of such conjugates in the biological systems. Finally, mechanisms guiding the process of cellular intake, essential for delivery of modern therapeutics, will be discussed.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献