Abstract
Crystalline polar metallocenes are potentially useful active materials as piezoelectrics, ferroelectrics, and multiferroics. Within density functional theory (DFT), we computed structural properties, energy differences for various phases, molecular configurations, and magnetic states, computed polarizations for different polar crystal structures, and computed dipole moments for the constituent molecules with a Wannier function analysis. Of the systems studied, Mn2(C9H9N)2 is the most promising as a multiferroic material, since the ground state is both polar and ferromagnetic. We found that the predicted crystalline polarizations are 30–40% higher than the values that would be obtained from the dipole moments of the isolated constituent molecules, due to the local effects of the self-consistent internal electric field, indicating high polarizabilities.
Funder
Office of Naval Research
European Research Council
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献