NiMoO4 Nanosheets Embedded in Microflake-Assembled CuCo2O4 Island-like Structure on Ni Foam for High-Performance Asymmetrical Solid-State Supercapacitors

Author:

Li Gaofeng1ORCID,Chen Lingling2,Li Longfei2

Affiliation:

1. Institute of Advanced Energy Storage Technology and Equipment, Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China

2. Institute of Advanced Energy Storage Technology and Equipment, School of Materials Science and Chemcal Engineering, Ningbo University, Ningbo 315211, China

Abstract

Micro/nano-heterostructure with subtle structural design is an effective strategy to reduce the self-aggregation of 2D structure and maintain a large specific surface area to achieve high-performance supercapacitors. Herein, we report a rationally designed micro/nano-heterostructure of complex ternary transition metal oxides (TMOs) by a two-step hydrothermal method. Microflake-assembled island-like CuCo2O4 frameworks and secondary inserted units of NiMoO4 nanosheets endow CuCo2O4/NiMoO4 composites with desired micro/nanostructure features. Three-dimensional architectures constructed from CuCo2O4 microflakes offer a robust skeleton to endure structural change during cycling and provide efficient and rapid pathways for ion and electron transport. Two-dimensional NiMoO4 nanosheets possess numerous active sites and multi-access ion paths. Benefiting from above-mentioned advantages, the CuCo2O4/NiMoO4 heterostructures exhibit superior pseudocapacitive performance with a high specific capacitance of 2350 F/g at 1 A/g as well as an excellent cycling stability of 91.5% over 5000 cycles. A solid-state asymmetric supercapacitor based on the CuCo2O4/NiMoO4 electrode as a positive electrode and activated carbon as a negative electrode achieves a high energy density of 51.7 Wh/kg at a power density of 853.7 W/kg. These results indicate that the hybrid micro/nanostructured TMOs will be promising for high-performance supercapacitors.

Funder

the Science and Technology Innovation 2025 Major Project of Ningbo

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3