Preparation of Porous Hydroxyethyl Cellulose Materials to Utilize Lactic Acid with Vacuum-Assisted Process

Author:

Lee Haeun1,Nam Kung Do Chun2,Kang Sang Wook2

Affiliation:

1. Department of Electrical Engineering, Sangmyung University, Seoul 03016, Republic of Korea

2. Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea

Abstract

For the first time, we succeeded in manufacturing a 2-hydroxyethyl cellulose (HEC)-based composite membrane with improved thermal stability, for use as a battery separator, coating a HEC polymer solution to a polypropylene (PP) support and using a vacuum-assisted process. A HEC polymer solution was prepared by utilizing HEC and lactic acid (LA) as a plasticizer. A vacuum-assisted process was used to move ethanol, which a mobile phase to permeate a plasticized region in the HEC polymer side for pore formation. The pores formed with uniform nano sizes, and areas in which some large pores formed were observed. The thermal stability of the composites was measured using TGA. The thermal decomposition temperatures were measured at about 250 °C for the neat HEC, about 210 °C for the HEC/LA film, and about 335 °C for the HEC/LA/PP membrane before the process. After the vacuum-assisted process, the first and second thermal decomposition were observed at about 360 °C and 450 °C, respectively. The HEC/LA/PP membrane after the process showed greater thermal stability than before the process. This means that the adhesion between the HEC polymer and the PP support was created through the rearrangement of the HEC chain, as LA escaped after the process, and it was seen indirectly that the mechanical strength was enhanced. In particular, the surface of the membrane was observed by SEM to investigate whether the HEC penetrated into the PP to block its pores, and whether the HEC region collapsed. Furthermore, the interaction of the HEC chain with the additives and the rearrangement of the HEC was confirmed using FT-IR. As a result, we demonstrated that the mechanical strength and thermal stability of the manufactured HEC/LA/PP membrane were enhanced.

Funder

Basic Science Research Program

National Research Foundation of Korea

Ministry of Science, ICT, and Future Planning

2021 Green Convergence Professional Manpower Training Program of the Korean Environmental Industry and Technology Institute

Ministry of Environment

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3