One-Pot Synthesis of N-Doped NiO for Enhanced Photocatalytic CO2 Reduction with Efficient Charge Transfer

Author:

Wang Fulin1,Yu Zhenzhen1,Shi Kaiyang1,Li Xiangwei1,Lu Kangqiang1ORCID,Huang Weiya1ORCID,Yu Changlin2,Yang Kai1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

Abstract

The green and clean sunlight-driven catalytic conversion of CO2 into high-value-added chemicals can simultaneously solve the greenhouse effect and energy problems. The controllable preparation of semiconductor catalyst materials and the study of refined structures are of great significance for the in-depth understanding of solar-energy-conversion technology. In this study, we prepared nitrogen-doped NiO semiconductors using a one-pot molten-salt method. The research shows that the molten-salt system made NiO change from p-type to n-type. In addition, nitrogen doping enhanced the adsorption of CO2 on NiO and increased the separation of photogenerated carriers on the NiO. It synergistically optimized the CO2-reduction system and achieved highly active and selective CO2 photoreduction. The CO yield on the optimal nitrogen-doped photocatalyst was 235 μmol·g−1·h−1 (selectivity 98%), which was 16.8 times that of the p-type NiO and 2.4 times that of the n-type NiO. This can be attributed to the fact that the nitrogen doping enhanced the oxygen vacancies of the NiOs and their ability to adsorb and activate CO2 molecules. Photoelectrochemical characterization also confirmed that the nitrogen-doped NiO had excellent electron -transfer and separation properties. This study provides a reference for improving NiO-based semiconductors for photocatalytic CO2 reduction.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Academic and Technical Leaders Training Program—Young Talents

Program of Qingjiang Excellent Young Talents, JXUST

Ganzhou Young Talents Program of Jiangxi Province

Postdoctoral Research Projects of Jiangxi Province in 2020

Jiangxi Province “Double Thousand Plan”

Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme

Jiangxi Provincial Natural Science Foundation

Foundation Engineering Research Center of Tungsten Resources High-Efficiency Development and Application Technology of the Ministry of Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3