Isolation of a Halogen-Bonded Complex Formed between Methane and Chlorine Monofluoride and Characterisation by Rotational Spectroscopy and Ab Initio Calculations

Author:

Legon Anthony C.ORCID,Lister David G.,Holloway John H.,Mani DevendraORCID,Arunan Elangannan

Abstract

A halogen-bonded complex formed between methane and chlorine monofluoride has been isolated in the gas phase before the reaction between the components and has been characterised through its rotational spectrum, which is of the symmetric-top type but only exhibits K = 0 type transitions at the low effective temperature of the pulsed-jet experiment. Spectroscopic constants for two low-lying states that result from internal rotation of the CH4 subunit were detected for each of the two isotopic varieties H4C···35ClF and H4C···37ClF and were analysed to show that ClF lies on the symmetry axis with Cl located closer than F to the C atom, at the distance r0(C···Cl) ≅ 3.28 Å and with an intermolecular stretching force constant kσ ≅ 4 N m−1. Ab initio calculations at the explicitly correlated level CCSD(T)(F12c)/cc-pVTZ-F12 show that in the equilibrium geometry, the ClF molecule lies along a C3 axis of CH4 and Cl is involved in a halogen bond. The Cl atom points at the nucleophilic region identified on the C3 axis, opposite the unique C–H bond and somewhere near the C atom and the tetrahedron face centre, with re(C···Cl) = 3.191 Å. Atoms-in-molecules (AIM) theory shows a bond critical point between Cl and C, confirming the presence of a halogen bond. The energy that is required to dissociate the complex from the equilibrium conformation into its CH4 and ClF components is only De ≅ 5 kJ mol−1. A likely path for the internal rotation of the CH4 subunit is identified by calculations at the same level of theory, which also provide the variation of the energy of the system as a function of the motion along that path. The barrier to the motion along the path is only ≅ 20 cm−1.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3