Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color

Author:

Xia Yongqing1ORCID,Meng Yaru1,Yu Ronghua1,Teng Ziqi1,Zhou Jie1,Wang Shengjie1ORCID

Affiliation:

1. Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel actuator that can bend bidirectionally and change color simultaneously, just like an octopus. The actuator is fabricated by elastomer/hydrogel bilayer and the hydrogel layer was decorated with thermoresponsive microgels as the photonic crystal blocks. Compared with the previously reported poly(N-isopropylacrylamide) hydrogel-based bilayer hydrogel actuators, which are generally limited to one-directional deformation, the elastomer/hydrogel bilayer actuator prepared in our work exhibits unique bidirectional bending behavior in accordance with the change of structural color. The bending degrees can be changed from −360° to 270° in response to solution temperatures ranging from 20 °C to 60 °C. At the same time, the surface color changes from red to green, and then to blue, covering the full visible light spectrum. The bending direction and degree of the hydrogel actuator can easily be adjusted by tuning the layer thickness ratio of the elastomer/hydrogel or the composition of the hydrogel. The color-tunable hydrogel-elastomer actuator reported in this work can achieve both programmable deformations and color-changing highly resembling the natural actuating behaviors of creatures.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3