Affiliation:
1. State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
Abstract
Developing a low-cost and highly efficient semiconductor photocatalyst for the decomposition of organic pollutants and antibiotics is highly desirable. Herein, FeOOH nanosheets were prepared using a liquid-phase stirring technique and combined with ZnCdS (ZCS) nanoparticles to construct FeOOH/ZCS nanocomposite photocatalysts. The photocatalytic efficiency of the FeOOH/ZCS nanocomposite was evaluated for the decomposition of various pollutants, including rhodamine B, methylene Blue, and tetracycline. The FeOOH/ZCS nanocomposite exhibited significantly higher photocatalytic performance for the decomposition of various organics. Moreover, the optimized FeOOH/ZCS retained more than 90% of its initial photocatalytic activity even after five successful runs. Radical quenching test and electron spin resonance (ESR) analysis revealed that hydroxyl radicals (•OH) play a dominant role for the decomposition of organics. The FeOOH/ZCS Z-scheme heterojunction significantly facilitates higher charge transfer efficiency and the generation of reactive radicals, resulting in excellent photocatalytic degradation performance. This work offers a new approach to synthesis FeOOH-based photocatalyst for the elimination of organics and antibiotics in water.
Funder
National Natural Science Foundation of China