Effects of Central Metal Ion on Binuclear Metal Phthalocyanine-Based Redox Mediator for Lithium Carbonate Decomposition

Author:

Yan Qinghui12,Yan Linghui3,Huang Haoshen4,Chen Zhengfei4,Liu Zixuan42,Zhou Shaodong3ORCID,He Haiyong2

Affiliation:

1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China

4. School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China

Abstract

Li2CO3 is the most tenacious parasitic solid-state product in lithium–air batteries (LABs). Developing suitable redox mediators (RMs) is an efficient way to address the Li2CO3 issue, but only a few RMs have been investigated to date, and their mechanism of action also remains elusive. Herein, we investigate the effects of the central metal ion in binuclear metal phthalocyanines on the catalysis of Li2CO3 decomposition, namely binuclear cobalt phthalocyanine (bi-CoPc) and binuclear cobalt manganese phthalocyanine (bi-CoMnPc). Density functional theory (DFT) calculations indicate that the key intermediate peroxydicarbonate (*C2O62−) is stabilized by bi-CoPc2+ and bi-CoMnPc3+, which is accountable for their excellent catalytic effects. With one central metal ion substituted by manganese for cobalt, the bi-CoMnPc’s second active redox couple shifts from the second Co(II)/Co(III) couple in the central metal ion to the Pc(-2)/Pc(-1) couple in the phthalocyanine ring. In artificial dry air (N2-O2, 78:22, v/v), the LAB cell with bi-CoMnPc in electrolyte exhibited 261 cycles under a fixed capacity of 500 mAh g−1carbon and current density of 100 mA g−1carbon, significantly better than the RM-free cell (62 cycles) and the cell with bi-CoPc (193 cycles).

Funder

Key Research and Development Program of Zhejiang Province

Ningbo S&T Innovation 2025 Major Special Program

Ningbo Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3