Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater

Author:

Luo Zhang1,Shi Hongtao1,Lyu Hanghang2,Shi Hang3ORCID,Liu Bo4ORCID

Affiliation:

1. China Railway Engineering Services Co., Ltd., Chengdu 610083, China

2. China Construction Eighth Engineering Division Co., Ltd., Shanghai 200135, China

3. Yalong River Hydropower Development Company, Chengdu 610051, China

4. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, #163, Xianlin Avenue, Nanjing 210023, China

Abstract

Urban tailwater typically has a low carbon-to-nitrogen ratio and adding external carbon sources can effectively improve the denitrification performance of wastewater. However, it is difficult to determine the dosage of additional carbon sources, leading to insufficient or excessive addition. Therefore, it is necessary to prepare solid slow-release carbon source (SRC) materials to solve the difficulty in determining the dosage of carbon sources. This study selected two SRCs of slow-release carbon source 1 (SRC1) and slow-release carbon source 2 (SRC2), with good slow-release performance after static carbon release and batch experiments. The composition of SRC1 was: hydroxypropyl methylcellulose/disodium fumarate/polyhydroxy alkanoate (HPMC/DF/PHA) at a ratio of 3:2:4, with an Fe3O4 mass fraction of 3%. The composition of SRC2 was: HPMC/DF/PHA with a ratio of 1:1:1 and an Fe3O4 mass fraction of 3%. The fitted equations of carbon release curves of SRC1 and SRC2 were y = 61.91 + 7190.24e−0.37t and y = 47.92 + 8770.42e−0.43t, respectively. The surfaces of SRC1 and SRC2 had a loose and porous morphological structure, which could increase the specific surface area of materials and be more conducive to the adhesion and metabolism of microorganisms. The experimental nitrogen removal by denitrification with SRCs showed that when the initial total nitrogen concentration was 40.00 mg/L, the nitrate nitrogen (NO3−-N) concentrations of the SRC1 and SRC2 groups on the 10th day were 2.57 and 2.66 mg/L, respectively. On the 20th day, the NO3−-N concentrations of the SRC1 and SRC2 groups were 1.67 and 2.16 mg/L, respectively, corresponding to removal efficiencies of 95.83% and 94.60%, respectively. The experimental results indicated that SRCs had a good nitrogen removal effect. Developing these kinds of materials can provide a feasible way to overcome the difficulty in determining the dosage of carbon sources in the process of heterotrophic denitrification.

Funder

National Natural Science Foundation of China

National Key S&T Special Projects

Natural 440Science Foundation for Distinguished Young Scholars of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3