Structural Characterization, Cytotoxicity, and the Antifungal Mechanism of a Novel Peptide Extracted from Garlic (Allium sativa L.)

Author:

Li Shuqin1,Wang Yajie1,Zhou Jingna1,Wang Jia1,Zhang Min23,Chen Haixia1ORCID

Affiliation:

1. Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

2. College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China

3. State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China

Abstract

Garlic (Allium sativa L.) is a traditional plant with antimicrobial activity. This study aimed to discover new antifungal peptides from garlic, identify their structure, and explore the antimicrobial mechanism. Peptides were separated by chromatography and identified by MALDI-TOF analysis. Structure and conformation were characterized by CD spectrum and NMR analysis. Mechanism studies were conducted by SEM, membrane depolarization, and transcriptomic analysis. The cytotoxicity to mammalian cells as well as drug resistance development ability were also evaluated. A novel antifungal peptide named NpRS with nine amino acids (RSLNLLMFR) was obtained. It was a kind of cationic peptide with a α-helix as the dominant conformation. NOESY correlation revealed a cyclization in the molecule. The peptide significantly inhibited the growth of Candida albicans. The mechanism study indicated that membrane destruction and the interference of ribosome-related pathways might be the main mechanisms of antifungal effects. In addition, the resistance gene CDR1 for azole was down-regulated and the drug resistance was hardly developed in 21 days by the serial passage study. The present study identified a novel antifungal garlic peptide with low toxicity and provided new mechanism information for the peptide at the gene expression level to counter drug resistance.

Funder

National Key Research and Development Program of China

Tianjin Municipal Science and Technology Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3