Flowers Like α-MoO3/CNTs/PANI Nanocomposites as Anode Materials for High-Performance Lithium Storage

Author:

Kiran Laraib123,Aydınol Mehmet Kadri34,Ahmad Awais56ORCID,Shah Syed Sakhawat1,Bahtiyar Doruk34,Shahzad Muhammad Imran2ORCID,Eldin Sayed M.7,Bahajjaj Aboud Ahmed Awadh8

Affiliation:

1. Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. Nanosciences and Technology Department (NS&TD), National Centre for Physics (NCP), Islamabad 44000, Pakistan

3. Metallurgical & Materials Engineering Department, Middle East Technical University, Ankara 06800, Turkey

4. ENDAM, Energy Materials and Storage Devices Research Center, Middle East Technical University, Ankara 06800, Turkey

5. Department of Chemistry, University of Lahore, Lahore 54000, Pakistan

6. Departamento de Quimica Organica, Universidad de Cordoba, 14014 Cordoba, Spain

7. Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt

8. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Lithium-ion batteries (LIBs) have been explored to meet the current energy demands; however, the development of satisfactory anode materials is a bottleneck for the enhancement of the electrochemical performance of LIBs. Molybdenum trioxide (MoO3) is a promising anode material for lithium-ion batteries due to its high theoretical capacity of 1117 mAhg−1 along with low toxicity and cost; however, it suffers from low conductivity and volume expansion, which limits its implementation as the anode. These problems can be overcome by adopting several strategies such as carbon nanomaterial incorporation and polyaniline (PANI) coating. Co-precipitation method was used to synthesize α-MoO3, and multi-walled CNTs (MWCNTs) were introduced into the active material. Moreover, these materials were uniformly coated with PANI using in situ chemical polymerization. The electrochemical performance was evaluated by galvanostatic charge/discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis revealed the presence of orthorhombic crystal phase in all the synthesized samples. MWCNTs enhanced the conductivity of the active material, reduced volume changes and increased contact area. MoO3-(CNT)12% exhibited high discharge capacities of 1382 mAhg−1 and 961 mAhg−1 at current densities of 50 mAg−1 and 100 mAg−1, respectively. Moreover, PANI coating enhanced cyclic stability, prevented side reactions and increased electronic/ionic transport. The good capacities due to MWCNTS and the good cyclic stability due to PANI make these materials appropriate for application as the anode in LIBs.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3