Gender Control of Mouse Embryos by Activation of TLR7/8 on X Sperm via Ligands dsRNA-40 and dsRNA-DR

Author:

Hou Yunfei12345ORCID,Peng Jingfeng12345,Hong Linjun12345ORCID,Wu Zhenfang123456,Zheng Enqin12345,Li Zicong123456

Affiliation:

1. National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China

2. State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China

3. National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China

4. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China

5. Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China

6. Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China

Abstract

Gender control technologies are promising for enhancing the production efficiency of the farm animal industry, and preventing sex-linked hereditary diseases in humans. It has been shown that the X sperm of mammalian animals specifically expresses X-chromosome-derived toll-like receptor 7/8 (TLR7/8), and the activation of TLR7/8 on the X sperm by their agonist, R848, can separate X and Y sperm via the specific inhibition of X sperm motility. The use of R848-preselected sperm for fertilization resulted in sex-ratio-skewed embryos or offspring. In this study, we aimed to investigate whether two other TLR7/8 ligands, double-stranded RNA-40 (dsRNA-40) and double-stranded RNA-DR (dsRNA-DR), are also effective in the separation of mouse X and Y sperm and the subsequent generation of gender-ratio-skewed in vitro fertilization (IVF) embryos. Our results indicated that cholesterol modification significantly enhances the transfection of dsRNA-40 and dsRNA-DR into sperm cells. dsRNA-40 and dsRNA-DR incubation with mouse sperm could separate X and Y sperm by the specific suppression of X sperm motility by decreasing its ATP level and mitochondrial activity. The use of a dsRNA-40- or dsRNA-DR-preselected upper layer of sperm, which predominantly contains high-motility Y sperm, for IVF caused a male-biased sex ratio shift in resulting embryos (with 65.90–74.93% of embryos being male). This study develops a simple new method for the efficient separation of mammalian X and Y sperm, enabling the selective production of male or female progenies.

Funder

Guangdong Key Research and Development Project

Double first-class discipline promotion project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3