Determination of Minimum Miscibility Pressure of CO2–Oil System: A Molecular Dynamics Study

Author:

Li Ding,Xie Shuixiang,Li Xiangliang,Zhang Yinghua,Zhang Heng,Yuan Shiling

Abstract

CO2 enhanced oil recovery (CO2-EOR) has become significantly crucial to the petroleum industry, in particular, CO2 miscible flooding can greatly improve the efficiency of EOR. Minimum miscibility pressure (MMP) is a vital factor affecting CO2 flooding, which determines the yield and economic benefit of oil recovery. Therefore, it is important to predict this property for a successful field development plan. In this study, a novel model based on molecular dynamics to determine MMP was developed. The model characterized a miscible state by calculating the ratio of CO2 and crude oil atoms that pass through the initial interface. The whole process was not affected by other external objective factors. We compared our model with several famous empirical correlations, and obtained satisfactory results—the relative errors were 8.53% and 13.71% for the two equations derived from our model. Furthermore, we found the MMPs predicted by different reference materials (i.e., CO2/crude oil) were approximately linear (R2 = 0.955). We also confirmed the linear relationship between MMP and reservoir temperature (TR). The correlation coefficient was about 0.15 MPa/K in the present study.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3