A Nanosheet-Assembled SnO2-Integrated Anode

Author:

Wang Xiaoli,Zhao Xinyu,Wang Yin

Abstract

There is an ever-increasing trend toward bendable and high-energy-density electrochemical storage devices with high strength to fulfil the rapid development of flexible electronics, but they remain a great challenge to be realised by the traditional slurry-casting fabrication processes. To overcome these issues, herein, a facile strategy was proposed to design integrating an electrode with flexible, high capacity, and high tensile strength nanosheets with interconnected copper micro-fibre as a collector, loaded with a novel hierarchical SnO2 nanoarchitecture, which were assembled into core–shell architecture, with a 1D micro-fibre core and 2D nanosheets shell. When applied as anode materials for LIBs, the resultant novel electrode delivers a large reversible specific capacity of 637.2 mAh g−1 at a high rate of 1C. Such superior capacity may benefit from rational design based on structural engineering to boost synergistic effects of the integrated electrode. The outer shell with the ultrathin 2D nanoarchitecture blocks can provide favourable Li+ lateral intercalation lengths and more beneficial transport routes for electrolyte ions, with sufficient void space among the nanosheets to buffer the volume expansion. Furthermore, the interconnected 1D micro-fibre core with outstanding metallic conductivity can offer an efficient electron transport pathway along axial orientation to shorten electron transport. More importantly, the metal’s remarkable flexibility and high tensile strength provide the hybrid integrated electrode with strong bending and stretchability relative to sintered carbon or graphene hosts. The presented strategy demonstrates that this rational nanoarchitecture design based on integrated engineering is an effective route to maintain the structural stability of electrodes in flexible LIBs.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3