Abstract
The calculation of the heats of combustion ΔH°c and formation ΔH°f of organic molecules at standard conditions is presented using a commonly applicable computer algorithm based on the group-additivity method. This work is a continuation and extension of an earlier publication. The method rests on the complete breakdown of the molecules into their constituting atoms, these being further characterized by their immediate neighbor atoms. The group contributions are calculated by means of a fast Gauss–Seidel fitting calculus using the experimental data of 5030 molecules from literature. The applicability of this method has been tested by a subsequent ten-fold cross-validation procedure, which confirmed the extraordinary accuracy of the prediction of ΔH°c with a correlation coefficient R2 and a cross-validated correlation coefficient Q2 of 1, a standard deviation σ of 18.12 kJ/mol, a cross-validated standard deviation S of 19.16 kJ/mol, and a mean absolute deviation of 0.4%. The heat of formation ΔH°f has been calculated from ΔH°c using the standard enthalpies of combustion for the elements, yielding a correlation coefficient R2 for ΔH°f of 0.9979 and a corresponding standard deviation σ of 18.14 kJ/mol.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Calculation of the Three Partition Coefficients logPow, logKoa and logKaw of Organic Molecules at Standard Conditions at Once by Means of a Generally Applicable Group-Additivity Method;Liquids;2024-03-01
2. Comment on Naef, R.; Acree, W.E., Jr. Calculation of the Three Partition Coefficients logPow, logKoa and logKaw of Organic Molecules at Standard Conditions at Once by Means of a Generally Applicable Group Additivity Method. Preprints 2023, 2023120275;Molecules;2024-02-18
3. Beyond group additivity: Transfer learning for molecular thermochemistry prediction;Chemical Engineering Journal;2023-09
4. Comment on Naef, R.; Acree, W.E., Jr. Revision and Extension of a Generally Applicable Group-Additivity Method for the Calculation of the Standard Heat of Combustion and Formation of Organic Molecules. Molecules 2021, 26, 6101;Molecules;2023-08-24
5. Calculation of Abraham model solute descriptors for 2-naphthoxyacetic acid;Physics and Chemistry of Liquids;2023-05-01