Affiliation:
1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
2. Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Binary metal oxide stannate (M2SnO4; M = Zn, Mn, Co, etc.) structures, with their high theoretical capacity, superior lithium storage mechanism and suitable operating voltage, as well as their dual suitability for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), are strong candidates for next-generation anode materials. However, the capacity deterioration caused by the severe volume expansion problem during the insertion/extraction of lithium or sodium ions during cycling of M2SnO4-based anode materials is difficult to avoid, which greatly affects their practical applications. Strategies often employed by researchers to address this problem include nanosizing the material size, designing suitable structures, doping with carbon materials and heteroatoms, metal–organic framework (MOF) derivation and constructing heterostructures. In this paper, the advantages and issues of M2SnO4-based materials are analyzed, and the strategies to solve the issues are discussed in order to promote the theoretical work and practical application of M2SnO4-based anode materials.
Funder
CAS “Light of West China” Program
Youth Innovation Promotion Association CAS
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献